Slide 1

Oxidative Phosphorylation: Electron transport - Chemiosmosis - ATP synthesis

- Glycolysis and the citric acid cycle supply:
 - 10 NADH and 2 FADH₂
 - extracted from each glucose molecule burned
- These two electron carriers donate electrons to the <u>electron transport chain (ETC)</u>

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 5

- Electrons are passed through a number of proteins including cytochromes (each with an iron atom) to O₂
- The electron transport chain generates no ATP
- It simply uses the energy to push the freed hydrogen ions H+ out of the mitochondrial matrix into the intermembrane space

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

the electron to	ored in a H* gradient across a membrane ransport chain to ATP synthesis nt is referred to as a proton-motive force	
Protein complex of diseases diseases carriers MAON [carring electron from from]	III 2H + 1/O2	1,0 Companie
	Clectron transport chain	Chemiosmous
	Oxidative phosphorylation	

Slide 8

Oxidative Phosphorylation: Electron transport - Chemiosmosis - ATP synthesis

- Glycolysis and the citric acid cycle supply:
 - 10 NADH and 2 FADH₂
 - extracted from each glucose molecule burned
- NADH carries enough energy to make 3 ATP
- FADH2 carries enough energy to make 2 ATP
- Enough for 34 ATP from each glucose

Consists C 1998 Barrer Education Les auditables a Barrer Barrieri Consissa

Other Catabolic Pathways

- Fermentation is a partial degradation of sugars that occurs (with/without) O₂
 - Alcohol fermentation Saccharomyces cerevisiae
 Lactic acid fermentation Lactobacillus acidophilus
 Acetic acid fermentation Escherichia coli
- Anaerobic respiration is similar to aerobic respiration but consumes compounds other than O₂
 - Sulfate-reducing bacteria and archaea

Slide 11

Fermentation

- Fermentation does not generate ATP directly
- Instead it makes glycolysis run as a cycle
- Fermentation involves reactions that regenerate NAD+, which can be reused by glycolysis
- Two common types are <u>alcohol fermentation</u> and <u>lactic acid fermentation</u>

Slide 13

Fermentation and Aerobic Respiration Compared

- Both processes use glycolysis to oxidize glucose and other organic fuels to pyruvate
- Final electron acceptors: an organic molecule (such as pyruvate or acetaldehyde) in fermentation and ${\sf O}_2$ in cellular respiration
- Cellular respiration produces ~38 ATP per glucose molecule
- Glycolysis/fermentation produces 2 ATP per glucose molecule

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide 17

Biosynthesis (Anabolic Pathways)

- The body uses small molecules to build other substances
- These small molecules may come directly from food, from glycolysis, or from the citric acid cycle

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 18

Regulation of Cellular Respiration via Feedback Mechanisms

- Feedback inhibition is the most common mechanism for control
- If ATP concentration begins to drop, respiration speeds up; when there is plenty of ATP, respiration slows down
- Control of catabolism is based mainly on regulating the activity of enzymes at strategic points in the catabolic pathway

Copyright O 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide 20

Practice Questions

- $\label{eq:continuous} 1.\,\text{``Glucose} + Fructose -----> Sucrose"\ is\ an\ example\ of\ which\ type\ of\ reaction?$
 - a. catabolism
 - b. anabolism
- 2. Does the equation above generate or use energy?
- 3. What is the name of the high-energy, recyclable molecule in which energy is stored?
- 4. In glycolysis, glucose is broken down. Is glucose oxidized or reduced?

Slide 21

Practice Questions

5. Are the following oxidized/reduced forms?

NAD+

NADPH

FAD

6. Are the above molecules:

norganic cofactors?

organic coenzymes?

7. What is the primary function of the above molecules in cellular respiration?

Practice Questions	
D (orga	anelle)
Clucose 2 Pyrouses 2 Arp Co. 2 ATP	
Name the stages of cellular respiration (A, B, C) Name the organelle (D); Where does each stage occur? How many ATP are generated at each stage? What type of phosphorylation occurs at each stage to generate ATP?	

	 	 	 	 	 -
					_
	 	 	 	 	 _
					_
	 	 		 	 -